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1 Introduction

This document presents technical details on methodology used for generating eco-

nomic scenarios provided as a service (ESAS).

2 ESAS Model Description

The ESAS is based on an additive one factor and two factor Gaussian interest

rate models (hereafter HW model and Additive G2++ model, respectively). The

interest rate model describes the dynamics of short-rate and allows pricing of any

derivative or guarantee with payoff functions that is purely dependent on interest

rates. ESAS utilizes HWmodel as a baseline model, and the Additive G2++model

is an alternative option.1 A key element of the short-rate model is an initial yield

curve, which is modeled using the Nelson-Siegel or Nelson-Siegel-Svensson model.

The model is calibrated to swaption prices, which are the most complex liquid

interest rate derivatives available, i.e., their prices may be considered the most

representative for calibration purposes. For the pricing of stock price dependent

derivatives and guarantees, the model is extended by a geometric Brownian motion

for stock prices.

This section is divided into four subsections providing details on relevant method-

ology. First, an econometric yield curve model for the initial yield curve is de-

scribed. Second, we discuss swaption market practice and provide methodology

relevant to calculating market swaption prices. Third, the general properties and

computations of interest rates are discuss. Then the Hull-White and Additive

G2++ models are introduced. Finally, in the last two subsections we extend the
1Since the financial data for model calibration provided by common data providers are usually

obtained as an output from the SABR model, the HW model is mostly sufficient, while the

Additive G2++ model tends to overfit the data.
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interest rate model with stocks and foreign interest rates.

2.1 Yield Curve Model

The Nelson-Siegel (NS) model can be considered a special case of the Nelson-

Siegel-Svensson (NSS) model; therefore, we will describe methodology for the NSS

model only.

2.1.1 Zero-Yield

We will define the NSS model by equation for zero-yield, for more details see

EIOPA’s technical documentation. Let RNSS(0, T )2 is zero yield with maturity at

time T , then the model is given by

RNSS(0, T ) =β0 + β1
1− exp

{
− T
γ1

}
T
γ1

+ β2

1− exp
{
− T
γ1

}
T
γ1

− exp
{
− T
γ1

}+

β3

1− exp
{
− T
γ2

}
T
γ2

− exp
{
− T
γ2

} ,
where β0, β1, β2, β3, γ0, and γ1 are parameters. The NSS model reduces to NS

model by setting β3 = 0.

2.1.2 Zero-Bond Price

Knowing the model zero-yields, we can easily compute zero-bond prices as follows

PNSS(0, T ) = e−TR
NSS(0,T ).

2The first argument denotes current time. In case of the initial yield curve it is always 0.
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2.1.3 Instantaneous Forward Rate

Using the definition of a short-rate (i.e., interest rate paid over infinitesimally small

interval) we can obtain initial forward instantaneous rates

fNSS(0, T ) = −∂lnP (0, T )
∂T

= β0 + β1e
− T
γ1 + β2T

e
− T
γ1

γ1
+ β3T

e
− T
γ2

γ2
.

For the HW and Additive G2++ models we will also need a derivative with respect

to T given by

∂fNSS(0, T )
∂T

= −β1

γ1
e
− T
γ1 + β2

e− T
γ1

γ1
− T e

− T
γ1

γ2
1

+ β3

e− T
γ2

γ2
− T e

− T
γ2

γ2
2

 .
2.1.4 Calibration

The model is calibrated to market zero-yields or to EIOPA zero-yields observed

at time 0, i.e., at time of calibration of the whole ESAS model. A sum of squared

errors is used as an optimization criteria. Let RM(0, Ti) are observed zero-yields

with maturities T1, T2, ..., Tn, then the parameters are obtained as a solution to

the problem

[β0, β1, β2, β3, γ0, γ1]T = argmin
[b0,b1,b2,b3,g0,g1]T

n∑
i=1

(
RNSS(0, Ti)−RM(0, T )

)2
.

2.2 Swaption Prices

The market practice is to quote Black’s 3 volatilities instead of swaption prices, or

recently due to a low interest rates, volatilities of other alternative models. For

calibration of the short-rate model we need market swaption prices.
3The Black’s model assumes that interest rates are log-normally distributed. Therefore, the

interest rates can’t be negative. In recent years, the EUR interest rates were negative for shorter

maturities. Therefore, the Black’s model is no longer compatible with all available market data.

Consequently, models based on normal distribution or shifted log-normal distribution became

more common. However, for longer maturities the Black’s model is still reliable.
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The computation of swaption prices requires knowledge of yield curve, zero-

bonds in particular. In ESAS, the zero-bond prices are obtained from the initial

yield curve (NSS) model that is later used also as an input for the short-rate model.

A swaption is an option that gives buyer right to open a swap position at

maturity4. There are two types of swaptions in terms of swap position, payer

and receiver swaptions. Since the type of swaption has no impact on results of

calibration, we will consider payer swaptions only.

2.2.1 Forward Swap Rate

First we will define forward swap rate. Let Tα is swaption maturity, and Tα+1,

Tα+2, ... Tβ is increasing sequence of times, when payments of underlying swap

are settled. Then

Sα,β(0) = P (0, Tα)− P (0, Tβ)∑β
i=α+1 τiP (0, Ti)

is forward swap rate, where τi = Ti − Ti−1. A swaption with a strike equal to

forward swap rate is refereed as At-The-Money (ATM hereafter).

2.2.2 Black’s Payer Swaptions

Let T = {Tα, Tα+1, ..., Tβ} is a set of maturity and payment times and τi is time in-

terval between individual payment times; then the payer swap price with maturity

Tα, tenor Tβ − Tα, and strike K is

PSBlack(0, T , τ,K, σα,β) =[
Sα,βΦ(d1(K,Sα,β, σα,β,

√
Tα))−KΦ(d2(K,Sα,β, σα,β,

√
Tα))

] β∑
i=α+1

τiP (0, Ti),

(1)
4The time of option expiration will be refereed as maturity, while the lifetime of the underlying

swap will be refereed as tenor.

4 September 2020



ESAS Technical Documentation

where

d1(K,Sα,β, σα,β,
√
Tα) =

ln(Sα,β
K

) + 1
2σ

2
α,βTα

σα,β,
√
Tα

d2(K,Sα,β, σα,β,
√
Tα) =

ln(Sα,β
K

)− 1
2σ

2
α,βTα

σα,β,
√
Tα

,

Φ is standard normal cumulative distribution function, and σα,β is volatility of the

Black’s model.

2.2.3 Shifted Black’s Payer Swaptions

Since the Black’s volatilities may not be available for shorter maturities due to the

negative interest rates, the shifted Black’s model may be used as an alternative.

The model is exactly the same as the standard Black’s model, the only difference is

a shift of the log-normal distribution. Therefore; interest rates may be negative up

to some threshold −shift. The shift parameter is quoted together with Black’s

shifted volatilities σshiftα,β , and the payer swap price is given as

PSBlack−shifted(0, T , τ,K, σshiftα,β , shift) =[
(Sα,β + shift) Φ(d1(K,Sα,β, σshiftα,β ,

√
Tα))− (K + shift) Φ(d2(K,Sα,β, σshiftα,β ,

√
Tα))

]

∗
β∑

i=α+1
τiP (0, Ti),

(2)

where

d1(K,Sα,β, σα,β,
√
Tα) =

ln(Sα,β+shift
K+shift ) + 1

2σ
2
α,βTα

σα,β,
√
Tα

,

d2(K,Sα,β, σα,β,
√
Tα) =

ln(Sα,β+shift
K+shift )− 1

2σ
2
α,βTα

σα,β,
√
Tα

.

2.2.4 Bachelier Payer Swaptions

Another alternative to the Black’s model is Bachelier model with normally dis-

tributed interest rates, and hence appropriate for economy with negative interest
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rates. The payer swaption price is given by

PSBachelier(0, T , τ,K, σnormalα,β ) = σ
√
T

[
Φ
(
Sα,β −K
σ
√
T

)
Sα,β −K
σ
√
T

+ φ

(
Sα,β −K
σ
√
T

)]
,

where φ is probability density function of standard normal distribution.

2.3 Short Rate Model

Short rate model describes stochastic dynamics of the instantaneous interest rate

(hereafter short-rate), i.e., interest rate paid over infinitesimally small interval. All

interest rates in the economy then can be expressed as a function of short rate and

its stochastic properties via no-arbitrage pricing theory. Let r(t) is short-rate, then

any asset at time t with payoff at time T can be priced by no-arbitrage pricing

formula as

E
[
e−
∫ T
t
r(s)dsPayoffT

]
.

Before defining particular models we will define relations between short-rate, zero-

bond and interest rates.

2.3.1 Zero-Bond

A zero-coupon bond with nominal value 1 at time t with maturity at time T can

be priced via the no-arbitrage pricing formula as

P (t, T ) = E
[
e−
∫ T
t
r(s)ds1

]

2.3.2 Zero-Yield

The zero-yield at time t with maturity at time T is given by a standard relation

R(t, T ) = − lnP (t, T )
T

.
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2.3.3 Forward Rate

A model forward interest rate at time t for period from T to S is given by

F (t, T, S) = R(t, S)(S − t)−R(t, T )(T − t)
S − T

.

2.3.4 Money-Market Account

A money-market account is a hypothetical account with one unit of currency in-

vested at time 0 accumulating short-rate. Assume that trajectory of r(t) up to

time t is given, then the money-market account value at time t is

MM(t) = e
∫ t

0 r(u)du.

The (simulated) trajectory r(u) is observed only at particular times, not continu-

ously. Therefore, the integral is calculated numerically using rectangular integra-

tion and considering left-sided values of r(t). In particular, let r(t) is observed in

equidistant intervals with a length ∆u, then the money-market account value is

computed as

MM(t) ≈ exp

(
t∑

u=1
r(u− 1)∆u

)
.

2.3.5 Discount Factors

A discount-factor for a given trajectory r(T ) known up to time T discounting

values from T to t is given as

DF (t, T ) = e−
∫ T
t
r(u)du = MM(t)

MM(T ) .
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2.4 Hull-White Model

The HW model is a short rate model, where instantaneous short rate dynamics is

given by
dr(t) = [θ(t)− αr(t)]dt+ σdW (t),

θ(t) = ∂fM(0, t)
∂t

+ αfM(0, t) + σ2

2α(1− e−2αt),
(3)

where W is a wiener process, fNSS is given by NSS model, and α and σ are

parameters. Derivations of all formulas in this section may be found in Brigo and

Mercurio (2007).

2.4.1 Zero-Bond Price

Assume that trajectory of r(t) is known up to time t. The price of zero-coupon

bond in HW model at time t with maturity at time T is given by a formula

PHW (t, T ) = A(t, T )e−B(t,T )r(t),

where

B(t, T ) = 1
α

[1− e−α(T−t)],

A(t, T ) = PNSS(0, T )
PNSS(0, t) exp{B(t, T )fNSS(0, t)− σ2

4α(1− e−2αt)B(t, T )2}.

2.4.2 Payer Swaption Price

Following the notation established before, let T0 is maturity of swaption, and

T1, T2, ..., Tn, T0 < T1 < ... < Tn = Tβ are swap payment times. Let T is set of

maturity and payment times. The swap pays fixed strike rate K. We set ci := Kτi

for i = 1, 2, ..., (n − 1) and cn := 1 + Kτi, where τi is time between payments at

times Ti and Ti−1. The payer swaption price at time 0 is then given by

PSHW (0, T , K) =
n∑
i=1

ciZBP (0, T0, Ti, Xi), (4)
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where Xi := A(T0, Ti)exp{−B(T0, Ti)r∗} with r∗ being solution to the following

equation
n∑
i=1

ciA(T0, Ti)e−B(T0,Ti)r∗ = 1,

and ZBP being put option price for a zero-bond at time t, with maturity at T

and bond maturity at S given by formula

ZBP (t, T, S,X) = XP (t, T )Φ(−h+ σp)− P (t, S)Φ(−h),

where

σp = σ

√
1− e−2a(T−t)

2a B(T, S), (5)

h = 1
σp
ln

P (t, S)
P (t, T )X + σp

2 . (6)

2.4.3 Model Calibration

The model is calibrated to swaption prices. The market swaption prices are ob-

tained via Black’s model (eq. (1)), shifted Black’s model (eq. (2)) or Bachelier

model (eq. (2.2.4)). The HW model parameters are then calibrated by solving

optimization problemα
σ

 = argmin
[a,s]T

n∑
i=1

(
PSBlacki − PSHW

)2
.

2.4.4 Scenarios Generation

Once the model is calibrated, the next step is simulating the short-rate scenarios

and computing required interest rates and discount factors.

Discretization of the HW short-rate dynamics (3) yields

r(t) = r(t− 1) + [θ(t)− αr(t)] ∆t+ σ
√

∆tεN(0,1)(t),

r(0) = fNSS(0, 0),
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where ε(t) are independent random numbers sampled from a standard normal

distribution.

Zero-Bond prices, zero-yields and forward rates are functions of r(t) and param-

eters of the model, and may be easily computed for known scenarios of short-rate

using the formulas stated in the previous section.

2.5 Additive G2++ Model

The Additive G2++ model assumes that the instantaneous short rate follows

r(t) = φ(t) + x(t) + y(t),

dx(t) = −ax(t)dt+ σdW1(t),

dy(t) = −by(t)dt+ ηdW2(t),

φ(t) = fNSS(0, t) + σ2

2a2

(
1− e−at

)2
+ η2

2b2

(
1− e−bt

)2
+ ρ

ση

ab

(
1− e−at

)
(1− e−bt),

(7)

where W1 and W2 are Wiener processes with instantaneous correlation ρ; fNSS is

given by NSS model; and a, b, σ, and η are parameters. Derivations of all formulas

in this section may be found in Brigo and Mercurio (2007).

2.5.1 Zero-Bond Price

Assume that trajectory of x(t) and y(t) is known up to time t. The price of zero-

coupon bond in Additive G2++ model at time t with maturity at time T is given

by formula

P (t, T ) = exp

{
−
∫ T

t
φ(u)du− 1− e−a(T−t)

a
x(t)− 1− e−b(T−t)

b
y(t) + 1

2V (t, T )
}
,
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where5

V (t, T ) =σ
2

a2

[
T − t+ 2

a
e−a(T−t) − 1

2ae
−2a(T−t) − 3

2a

]
+

η2

b2

[
T − t+ 2

b
e−b(T−t) − 1

2be
−2b(T−t) − 3

2b

]
+

2ρση
ab

[
T − t+ e−a(T−t) − 1

a
+ e−b(T−t) − 1

b
− e−(a+b)(T−t) − 1

a+ b

]
,

∫ T

t
φ(u)du =

∫ T

t
fNSS(0, u)du+

∫ T

t

σ2

2a2

(
1− e−au

)2
du+

∫ T

t

η2

2b2

(
1− e−bu

)2
du+∫ T

t
ρ
ση

ab

(
1− e−au

)
(1− e−bu)du

and
∫ T

t
fNSS(0, u)du = β0(T − t) + β1γ1

[
e
− t
γ1 − e−

T
γ1

]
+ β2

[
e
− t
γ1 (γ1 + t)− e−

T
γ1 (γ1 + T )

]
+

β3

[
e
− t
γ2 (γ2 + t)− e−

T
γ2 (γ2 + T )

]
,∫ T

t

σ2

2a2

(
1− e−au

)2
du = σ2

a2
2a(T − t) + e−2at − 4e−at − e−2aT + 4e−aT

2a ,∫ T

t
ρ
ση

ab

(
1− e−au

)
(1− e−bu)du = ρ

ση

ab

[
e−t(a+b) − e−T (a+b)

a+ b
− e−at − e−aT

a
− e−bt − e−bT

b
+ T − t

]
.

2.5.2 Payer Swaption Price

Following the notation established before, let T0 is maturity of swaption, and

T1, T2, ..., Tn, T0 < T1 < ... < Tn = Tβ are swap payment times. Let T is set of

maturity and payment times. The swap pays fixed strike rate K. We set ci = Kτi

for i = 1, 2, ..., (n − 1) and cn = 1 + Kτi, where τi is time between payments at

times Ti and Ti−1. The payer swaption price at time 0 is then given by

PSG2++(0, T , K) = P (0, T )
∫ ∞
−∞

e−
1
2 (x−µx

σx
)2

σx
√

2π

[
Φ(−h1(x))−

n∑
i=1

λi(x)eκi(x)Φ(−h2(x))
]
dx,

(8)

5Note, the terms in 1
2 V (t, T ) will partially cancel-out with terms from the first integral in the

zero-bond formula. However, we keep track of all stated objects for validation purposes.
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where

h1(x) := ȳ − µy
σy
√

1− ρ2
xy

− ρxy(x− µx)
σx
√

1− ρ2
xy

,

h2(x) := h1(x) +B(b, T0, Ti)σy
√

1− ρ2
xy,

λi(x) := ciA(T0, Ti)e−B(a,T0,Ti)x,

κi(x) := −B(b, T0, Ti)
[
µy −

1
2(1− ρ2

xy)σ2
yB(b, T0, Ti) + ρxyσy

x− µx
σx

]
,

function ȳ = ȳ(x) of x is a unique solution to
n∑
i=1

ciA(T0, Ti)e−B(a,T0,Ti)x−B(b,T0,Ti)ȳ = 1.

Furthermore

µx := −MT0
x (0, T0),

µy := −MT0
y (0, T0),

σx := σ

√
1− e−2aT0

2a ,

σy := η

√
1− e−2bT0

2b ,

ρxy := ρση

(a+ b)σxσy

[
1− e−(a+b)T0

]
,

MT0
x (0, T0) =

(
σ2

a2 + ρ
ση

ab

)
[1− e−aT0 ]− σ2

2a2 [1− e−2aT0 ]− ρ ση

b(a+ b) [1− e−2(a+b)T0 ].

Finally, the functions A(t, T ) and B(z, t, T ) are

A(t, T ) = PM(0, T )
PM(0, t) exp

{1
2[V (t, T )− V (0, T ) + V (0, t)]

}
,

B(z, t, T ) = 1− e−z(T−t)
z

.

2.5.3 Model Calibration

The model is calibrated to swaption prices. The market swaption prices are ob-

tained via Black’s model (eq. (1)), shifted Black’s model (eq. (2)) or Bachelier
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model (eq. (2.2.4)). The Additive G2++ model parameters are then obtained by

solving optimization problem

a

b

σ

η

ρ


= argmin

[b0,b1,b2,b3,g0,g1]T

n∑
i=1

(
PSBlacki − PSG2++

)2
.

2.5.4 Scenarios Generation

Once the model is calibrated, the next step is simulating the factor scenarios and

computing required interest rates and discount factors.

Discretization6 of the Ornstein-Uhlenbeck processes (7) yields

x(t) = x(t− 1)− ax(t− 1)∆t+ σ
√

∆tεN(0,1)
1 (t),

y(t) = y(t− 1)− by(t− 1)∆t+ η
√

∆t
[
ρε
N(0,1)
1 (t) +

√
1− ρ2ε

N(0,1)
2 (t)

]
,

x(0) = 0, y(0) = 0,

where ε1 and ε2 are random numbers with independent standard normal distribu-

tions. The short-rate then can be easily obtained by its definition (7).

Zero-Bond prices, zero-yields and forward rates are functions of x(t), y(t) and

parameters of the model, and may be easily computed for known scenarios of

factors. For the details see the general subsection on short-rate models.
6We are using Euler discretization. Note, the more precise Milstein scheme leads to the

exactly same discrete process; therefore, it is not possible to increase precision using Milstein

scheme.
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2.6 Pricing

The final step is using the scenarios of interest rates and discount factors to ap-

proximate the price given by the risk-neutral pricing formula. Let Price0 is a

price of financial derivative or guarantee at time 0 that pays Payoff(T ) at time

T (function of known interest rates), i is index of scenario, DF (0, T ) is discount

factor from time T to time 0, and nsim is number of scenarios, then the price is

approximated as

Price0 = E [DF (0, T )Payoff(T )] ≈ 1
nsim

nsim∑
i=1

DFi(0, T )Payoffi(T ).

2.7 Equity Model

Pricing of financial derivatives or guarantees whose payoffs depend on interest rate

and equities alike requires stock prices scenarios. We extend the HW model and

Additive G2++ model with an equity model, where stock prices follow geometric

Brownian motion. However, we will make simplifying assumption, and instead

of capturing correlation between factors and stock prices, we will capture only

correlation between short-rate and stock prices7.

Let S(t) = [S1(t), S2(t), ..., Sn(t)]T is a price vector of n stocks, and denote

dW̃ (t) =



dW̃1(t)

dW̃2(t)
...

dW̃n+1(t)


7We are using historical correlations. This simplifying assumption is needed for straightfor-

ward estimation of correlation coefficients between equities and interest rates. Alternatively, we

could employ Kalman’s filter and retrieve correlations between observed equity prices and un-

observed factors of Additive G2++ model. However, short-rate dynamics frequently degenerate

to a single factor models, and Kalman’s filter may introduce significant error. Therefore, the

simplifying assumption seems to be more suitable.
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(n + 1) variate independent Wiener processes. Let ψi,j ∈ [−1, 1] for every i and

j. Using the Cholesky decomposition we can construct n + 1 correlated Wiener

processes

dW (t) =



1 0 0 . . . 0

ψ2,1
√

1− ψ2
2,1 0 . . . 0

ψ3,1 ψ3,2
√

1− ψ2
3,1 − ψ2

3,2 . . . 0
... ... ... . . . ...

ψn,1 ψn,2 ψn,3 . . .
√

1− ψ2
n,1 − ψ2

n,2 − ...− ψ2
n,n


︸ ︷︷ ︸

A

dW̃ (t)

with a correlation matrix AAT . In the case of HW model, the first Wiener process

is Wiener process from the diffusion term in the short-rate dynamics of HW model.

For the Additive G2++ the first Wiener process is a Wiener process that is given

by linear combination of Wiener processes as

dW1(t) = σdW r
1 (t) + ηdW r

2 (t)
(σ + ρη)2 +

√
1− ρ2η

,

where dW r
1 (t) and dW r

2 (t) are Wiener processes of x(t) and y(t) dynamics respec-

tively.

Denote dWS(t) as a vector dW (t) without the first element corresponding to

the short-rate, then we define the equity model for n stocks allowing correlation

with short-rate and between stocks as well by

dS(t) = (r(t)− y)S(t)dt+ σSS(t)dWs(t),

where y = [y1, y2, ..., yn]T are (optional) fixed dividend rates8 and
8Non-zero only if the stock pays dividends.
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σS =



σ1 0 0 . . . 0

0 σ2 0 . . . 0

0 0 σ3 . . . 0
... ... ... . . . ...

0 0 0 . . . σn


is a matrix of parameters, diagonal matrix of volatilities in particular.

2.7.1 Correlation Calibration

The information about risk-neutral correlations can be obtained only from prices

of complex financial derivatives that depend on both interest rates and equities at

the same time. The rigorously correct approach to calibration then would be using

all these derivatives to retrieve simultaneously information about whole correlation

structure. Unfortunately, there are usually no liquid derivatives that would provide

an information on all required correlation coefficients. Therefore, we utilize the

best feasible approach available.

[HIDDEN TEXT - THIS IS PREVIEW]

2.7.2 Volatility Calibration

[HIDDEN TEXT - THIS IS PREVIEW]

2.8 FX Model

The ESAS provides FX rate scenarios, which may be used for pricing financial

derivatives or guarantees whose payoffs are in foreign currencies. However, the
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ESAS at this point9 does not allow pricing with two stochastic yield curves. In

other words, it is assumed that foreign interest rates are deterministic.

The FX model is methodologically identical to the Equity Model, the only

difference is the continuously paid dividend, which now represents foreign instan-

taneous interest rate. Let FX(t) is a process of one unit of domestic currency

invested into a foreign currency at time t = 0 and governed by

dFX(t) = (r(t)− fFX(t))FX(t)dt+ σFXFX(t)dWFX(t),

where σFX is parameter of the FX model, and fFX(t) is deterministic foreign

instantaneous interest rate. The Brownian motion dWFX(t) may be correlated to

both, short-rate and equities.

2.8.1 Calibration

[HIDDEN TEXT - THIS IS PREVIEW ONLY]

3 Economic Scenarios Validation

The scenarios are supplied with a set of validation tests that provide an evidence

that the scenarios are appropriate for pricing purposes. An economic scenario

generator may fail to meet the quality requirements for several reasons, which

may be classified in one of the three following categories.

1. Simulation Error. The scenarios are used to numerically approximate the

exact price given by pricing formula (see section 2.6). However, the quality of

approximation depends on two parameters, a simulation step ∆t and number

of scenarios nsim. The smaller the simulation step is the finer and more

precise solution of stochastic differential equations we obtain. If the step is
9May be extended in the future.
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insufficient, it may generate bias in interest rate trajectories and therefore

a bias in pricing. The number of scenarios affects stochastic convergence

of approximated prices to the exact prices given by the pricing formula.

Insufficient number of scenarios may again lead to a miss-pricing. This type

of error is commonly checked by comparing scenario-based sample statistics

with their theoretical exact counterparts.

2. Model Error. The real world is complex, and models used for generating

economic scenarios are simplifying the real-world complexity. Therefore, too

simple model may miss the important feature of the markets. For instance,

market yield curve may have such shape, that can be poorly approximated by

the Nielson-Siegel-Svensson model. In such case a more complex econometric

model should be used10. The model error is typically verified by comparing

model prices with real prices.

3. Implementation Error. The ESAS (and any other similar scenario gener-

ator) relies heavily on numerical methods and programming computational

procedures. Therefore, the implementation11 poses a risk of program failures

cause by a human factor. This type of error is usually assessed by both,

extensive statistical analysis of generated scenarios and comparing model

prices with a market data.

The chapter is divided into three sections. First, a standard set of validation

tests for the HW model is introduced, followed by the consequent second section

on Additive G2++ model validation. Finally, tests related to the Equity Model

extension are introduced.
10However, it is extremely rare that the Nielson-Siegel-Svensson model wouldn’t be sufficient.
11Programming.
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3.1 HW Model Validation

3.1.1 Martingale Test

[HIDDEN TEXT - THIS IS PREVIEW]

3.1.2 Short-rate Analysis

[HIDDEN TEXT - THIS IS PREVIEW]

3.1.3 Convergence Test

[HIDDEN TEXT - THIS IS PREVIEW]

3.2 Additive G2++ Model Validation

3.2.1 Martingale Test

[HIDDEN TEXT - THIS IS PREVIEW]

3.2.2 Short-rate Analysis

[HIDDEN TEXT - THIS IS PREVIEW]

3.2.3 Convergence Test

[HIDDEN TEXT - THIS IS PREVIEW]

3.3 Equity Model Validation

3.3.1 Martingale Test

[HIDDEN TEXT - THIS IS PREVIEW]
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3.3.2 Market Consistency and Convergence

[HIDDEN TEXT - THIS IS PREVIEW]

3.4 FX Model Validation

[HIDDEN TEXT - THIS IS PREVIEW]
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